Geochemical investigations of metals release from submerged coal fly ash using extended elutriate tests.
نویسندگان
چکیده
A storage pond dike failure occurred at the Tennessee Valley Authority Kingston Fossil Plant that resulted in the release of over 3.8 million cubic meters (5 million cubic yards) of fly ash. Approximately half of this material deposited in the main channel of the Emory River, 3.5 km upstream of the confluence of the Emory and Clinch Rivers, Tennessee, USA. Remediation efforts to date have focused on targeted removal of material from the channel through hydraulic dredging, as well as mechanical excavation in some areas. The agitation of the submerged fly ash during hydraulic dredging introduces river water into the fly ash material, which could alter the redox state of metals present in the fly ash and thereby change their sorption and mobility properties. A series of extended elutriate tests were used to determine the concentration and speciation of metals released from fly ash. Results indicated that arsenic and selenium species released from the fly ash materials during elutriate preparation were redox stable over the course of 10d, with dissolved arsenic being present as arsenate, and dissolved selenium being present as selenite. Concentrations of certain metals, such as arsenic, selenium, vanadium, and barium, increased in the elutriate waters over the 10d study, whereas manganese concentrations decreased, likely due to oxidation and precipitation reactions.
منابع مشابه
Distribution of trace elements in coal and coal fly ash and their recovery with mineral processing practices: A review
Today coal is among the most important energy sources. In order to meet the world's energy demands, low-calorie lignite with a high ash content is generally used in the large capacity coal-fired thermal power plants. As a result of coal firing, wastes such as fly ash, slag, and flue gas are also produced. Subsequently, toxic trace elements within coal are transferred to wastes such as slag, fl...
متن کاملAc ce pte d M an us cri pt No t C op ye dit ed 1 Feasibility of Using Coal Fly Ash for Mine Waste Containment
This study investigates the feasibility of using coal fly ash and fly ash-bentonite mixtures as a barrier material for mine waste. The hydraulic conductivity of the coal fly ash was measured to be in the order of 2 x 10 -9 m/s when it was permeated with deionized water, and this value decreased significantly when the permeant was switched to acid mine drainage (AMD). Addition of bentonite to co...
متن کاملChemical Stabilization of Some Heavy Metals in an Artificially Multi-Elements Contaminated Soil, Using Rice Husk Biochar and Coal Fly Ash
A greenhouse experiment has been planned for this study to delineate the benefits of two types of rice husk biochars (namely B300 and B600 which are prepared at 300°C and 600°C, respectvely) and coal fly ash (CFA), as soil amendments, for decreasing the amount of some heavy metals (like Pb, Cd, Ni, Cr, and Cu) as well as mobility and phytoavailability in an artificially-calcareous multi-element...
متن کاملHuman and Environmental Dangers Posed by Ongoing Global Tropospheric Aerosolized Particulates for Weather Modification
BACKGROUND U.S. military perception of nuclear warfare led to countless unethical nuclear experiments performed on unsuspecting individuals without their informed consent. As evidenced here, subsequent perception of weather warfare has led to exposing millions of unsuspecting individuals to toxic coal fly ash with no public disclosure, no informed consent, and no health warnings. METHODS Thre...
متن کاملChemical Stabilization of Some Heavy Metals in an Artificially Multi-Elements Contaminated Soil, Using Rice Husk Biochar and Coal Fly Ash
A greenhouse experiment has been planned for this study to delineate the benefits of two types of rice husk biochars (namely B300 and B600 which are prepared at 300°C and 600°C, respectvely) and coal fly ash (CFA), as soil amendments, for decreasing the amount of some heavy metals (like Pb, Cd, Ni, Cr, and Cu) as well as mobility and phytoavailability in an artificially-calcareous multi-element...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemosphere
دوره 81 11 شماره
صفحات -
تاریخ انتشار 2010